Standard Product
NFC Unit COBHAM

UT32MOR500 32-bit Arm™ Cortex® MO+ Microcontroller

Application Note
Cobham.com/HiRel

October 24, 2018
The most important thing we build is trust

Table 1: Cross Reference of Applicable Products

MANUFACTURER DEVICE TYPE INTERNAL PIC

PART NUMBER NUMBER
Arm Cortex MO+ UT32MOR500 5962-17212 NFC Unit QS30

PRODUCT NAME

1.0 Overview

The NOR Flash Controller (NFC) interfaces to the external UT8BQNF8M8 64 Mbit NOR Flash Memory
(NFM). The NFC is a bridge between NFM and AHB bus and provides the functionality to control and
access the Flash using the JEDEC 42.4 Flash command set standard. It supports read, nvmem reset,
program and sector erase of the 11 Nor Flash Commands. The NFC provides the data interface and
control protocols to operate the NOR Flash via the Nor Flash Memory 1/0.

Figure 1 shows the basic diagram of the NOR FLASH MCTLR.

APB AHB

- CLK
m— RST_MN

DVDD—a

Al21:0]
Nor Flash DQ.;[,E'I’:]
CE#
PCLIC Controller Sex
PRESET_n xg:
PSEL RESET#
PENABLE BYTER
PADDR[9:0] -
PWRITE
PWDATA[31:0]
PRDATA[31:0]

1

WCC

|

HCLK
HRESET_n
HSEL
HWRITE
HSIZE[2:0]
HBURST[2:0]
HPROT[3:0]
HTRANS[1:0]

HMASTLOCK
HREADY
HADDR[31:0]
HWDATA[31:0]
HREADY
HRESP
HRDATA[31:0]

0 DySS

Figure 1: MTCLT

PUBLIC

94-00-00-01 -1- Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel
http://www.cobham.com/HiRel

COBHAM

The NFM (UT8QNF8MB3) is divided into four images, see figure 2. Each image is 90Kbytes and has a
CRC checksums associated with it at 90K offset from the image start address, i.e., 0x0002_67EE from
0x0001_0000. Each image occupies 2 sectors of 64Kbytes each for a total of 128Kbytes. At the start
of sector 16, address 0x0009_0000, 4 bytes are reserved for image override. This gives the user
flexibility for updating one or more of the images.

Offset Addr m Sector Num

IMAGE OVERIDE (4
bytes)

0x0009_0000 — 16
IMAGE 3 (90 Kbytes)
«—0x0002_FFF
0x0007_0000 — 14
IMAGE 2 (90 Kbytes)
CRC
0x0005_0000 — 1
IMAGE 1 (90 Kbytes) «— 0x0002_67EE
IMAGE 0 (90 Kbytes)
0x0003_0000 — «—10
IMAGE 0 (90 Kbytes)
/ <« 0x0001_0000
0x0001_0000 — «—38
0x0000_0000 — 0

Figure 2: External Flash memory map

2.0 Application Note Layout

This application note (AN) provides a brief description of the NFC unit's memory map, configuration
and programming.

PUBLIC

94-00-00-01 -2 - Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

3.0 NFEC Unit Hardware

The NFC Unit is mapped to the memory region from 0x4000 _CO00 to 0x4000 CFFF. It has 21
registers, see Table 2. For more information on each register, refer to Chapter 14 of the UT32R500
Functional Manual.

Table 2: UT32MOR500 NFC Registers

Offset Register Offset Register

0x00000 | NFC CONTROL 0x00000 NFC Control Register

0x00004 | NFC_STATUS 0x00004 NFC Status Register

0x00008 | NFC SECTOR ADDR | 0x00008 NFC Sector Address Register

0x00020 | NFC_TEST ID 0x00020 NFC Test ID Register

0x00024 | NFC TEST ERR 0x00024 NFC Test Error Register

OxO0FCO | PERIPH IDO-ID15 OXO00FCO- | NOR Flash Peripheral IDO to ID15
0x00FFC Registers

3.1 NFEC Unit Control Reqister

Enable Flash output drivers: OE#, WE# and CE by setting bit CONTROL[9] to O; Reset NFC by
toggling bit CONTROL[O] from O to 1; Power-up the NOR Flash by setting bit CONTROL[16] to 1,
then delay to allow it finish powering up; Reset the NOR Flash by toggling bit CONTROL[1] to 1: the
bit resets itself at the end of the operation.

3.2 NEC Unit Status Reqister

To wait for the last pending operation to complete, check bit STATUS[O]: 1 indicates NOR flash is
idle; O indicates the NOR Flash is busy waiting.

3.3 NEC Unit Sector Reqister

Sector Address Register (SECTOR_ADDR) in the core sets the corresponding sector address of the
external NOR Flash to do an erase, read or write.

3.3.1 NFC Peripheral 1D Reqgisters

Each Peripheral ID Register (PERIPH IDO) is one of 16 registers (PERIPH IDO-15).

PUBLIC

94-00-00-01 -3- Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

4.0 NEC Unit Initialization

The NFC is initialized for image number, access size—8 or 16 bits, and if powered down, powering up
the external NOR Flash.

Code 1 initializes the NFC to interface to the external NOR Flash (UT8aNF8m8), and for specifics on the
API's, refer to https://ams.aeroflex.com/pagesproduct/software/access/default.cfm.

NFC_Structlnit (&NFC_InitStruct);

NFC_InitStruct.ImageNumber = CurrentimageNumber;
// init the NFC
NFC_Error = NFC_Init (NFC, &NFC_InitStruct);

Code 1: NFC Initialization

5.0 NFC Unit Programming

Section 3.0 presented some of the basic configurations for the NFC core and each of the NFC
registers. The following sections show programming examples by making use of Cobham API's for
the UT32RMOR500 NFC Controller.

5.1 NEC Write Word

The API provides a function for writing bytes or words to the external flash. The function in Code 2
references the NFC structure, sets the address to write to and copies the data, whether it is a byte or
word to write to flash and the number of bytes to write.

// write the word
NFC_Error = NFC_WriteToFlash (NFC, Address, (void *) &Data,
sizeof (uintl6_t));

Code 2: Write

PUBLIC

94-00-00-01 -4 - Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel
https://ams.aeroflex.com/pagesproduct/software/access/default.cfm

COBHAM

Internally, the API finds the sector address and 8 or 16 bit write; Then enables the flash for write,
sends the byte(s) over the AHB bus to Flash and waits for the operation to complete; finally, disables
flash writes. Figure 3 shows the Oscilloscope timing diagram for writing to External Flash. The
diagram shows the 4 cycle program command sequence.

1 1
:{- Program command sequence —):

1

Address O0x555 | Ox2AA| Ox555 | PA |

RO] I l :

— _ 1

EH :] [S— |

- =|. L :

1 I 1 1

- L J 1 1 1

T

o Controls : — — - -

i T T 1 1

OF} i i i i i

1 1

Data | OxAA | Ox55 ; OxAO | PD |

1] 1 1 1
—-ANA-- 1 S——

ER J 1 1 J 1

EE } 1 I : :

0=] i | !

Figure 3: Program Command Sequence Timing Diagram

5.2 NFC Read Word

The API provides a function for reading bytes or words to the external flash. The function in Code 3
references the NFC structure, sets the address to read to, references where to put data, whether it is
a byte or word to read from flash and the number of bytes to read.

// read the word
NFC_Error = NFC_ReadFromFlash (NFC, (void *) &Data,
Address, sizeof (uintl6_t));

Code 3: NFC Write

Internally, the API finds the sector address and 8 or 16 bit read; Then enables the flash for read,
receives the byte(s) over the AHB bus from Flash. Figure 4 show an Oscilloscope diagram of writing
to the External Flash. The diagram shows the 1 cycle program command sequence.

PUBLIC

94-00-00-01 -5- Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

Read command sequence

> <
PA

RO Address
1]
aH
iE

Controls
CE]
DE] - [
LJE]
Do Data PD
) 1] |
= |
L) =

Figure 4: Read Command Sequence Timing Diagram

5.3 NFC Write Read Verify

For Write, Read and Verify, the user calls the same functions from Code 2 and Code 3 and compares
the data written and read from the external flash. Code 4 shows the comparison.

// compare the buffers, reuse Address
Address = memcmp (LargeWriteBuffer, LargeReadBuffer, Count);

if (Address == 0)
printf ("Write / Read / Verify cycle successful!'"\r\n\r\n“);
else

printf ("ERROR: Write / Read / Verify cycle unsuccessful...\r\n\r\n");

Code 4: Write, Read and Verify

Internally, the API repeats the stated statements for read and write from sections Section
5.1 and Section 5.2.

PUBLIC

94-00-00-01 -6 - Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

5.4 NFC Read Block

For read block, the user calls the same functions from Code 2 and Code 3 and passes a pointer to the
block of data to be read from the external flash, see Code 5.

// read the block
NFC_Error = NFC_ReadFromFlash (NFC, (void *) LargeReadBuffer,
Address, Count);

if (NFC_Error == NFC_ERR_NONE)
printf (" Data read...\r\n");
Else
printf ("ERROR: data read error: %d\r\n", NFC_Error);

Code 5: Read Block from Flash

Internally, the API repeats the stated statements for read and write from sections Section
5.1 and Section 5.2.

5.5 NFC Erase Image

The API provides a function for erasing an image, specified by the init function, see Section 5.2.
The function in Code 6 calls the API to erase the particular image.

// erase the image (two sectors)
NFC_Error = NFC_EraseFlashimage (NFC);

if (NFC_Error == NFC_ERR_NONE)
printf ("Image erased\r\n\r\n“);
else
printf ("ERROR: image erase error: %d\r\n\r\n“, NFC_Error);

Code 6: Erase Image

Internally, the API points to the base address of the beginning sector; disables write protect; enables
erase for sector 1 and 2 of the particular image, then waits for the operation to complete; erases
sector 1 followed by sector 2 of the particular image, then waits for the operation to complete;
Finally, restores the image base sector address. Figure 5 show an Oscilloscope diagram of writing to
the External Flash. The diagram shows the 6 cycle program command sequence.

PUBLIC

94-00-00-01 -7 - Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

| e— Erase command sequence —_— :

1 1 1

| 0X555 1 Ox2AA ! Ox555 i 0X555 | ox2AA E sa !

A0 Address ﬂ_ f : . :
S—

EE ; ! !) : :

I i 1 1

A : |='= I |
= — — .

1 T ;

Controls : :_ ! I I I i

CE I ! I N o N B
= : i : i i i
1= T

' I I I I I !

' I I I I I :

I I
OxAA Ox55 1 0x80 1 OxAA 0x55 0x30

- 1 1 1 : 1 : !

e I e S N e S

- 1 | I 1 1 1 I

Figure 5: Erase Command Sequence Timing Diagram

5.6 NFC Check Erase Image

All For Check Erase Image, the user calls the same functions from code 3, and reads every byte
within the image space and compares it to OxFF. Code 7 shows the comparison.

PUBLIC

94-00-00-01 -8- Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

// read every byte within the image space and compare it to OxFF (use a const buffer and memcmp())
for (BlockLoop = 0; ((BlockLoop < FULL_IMAGE_SIZE) && (NFC_Error == NFC_ERR_NONE)
&& (! ComparisonResult)); BlockLoop += SMALL_BUFFER_SIZE)

{
NFC_Error = NFC_ReadFromFlash (NFC, LargeWriteBuffer, BlockLoop, SMALL_BUFFER_SIZE);
ComparisonResult = memcmp (LargeWriteBuffer, ErasedBuffer, SMALL_BUFFER_SIZE);

}

if (NFC_Error != NFC_ERR_NONE)

printf ("ERROR: NOR Flash read error %d\r\n\r\n“, NFC_Error);

else if (ComparisonResult != 0)

printf ("ERROR: NOT erased at (16-byte) block: %d\r\n\r\n“, BlockLoop - SMALL_BUFFER_SIZE);
else // if ((NFC_Error == NFC_ERR_NONE) && (! ComparisonResult))

printf ("Image check: erased\r\n\r\n“);

Code 7: Image Compare

Putting it all together: From a Terminal window, type ? and hit Enter. The terminal window
displays all the commands for the functions stated in the previous sections, see Figure 6. Start with
INIT —i# and test the rest of commands.

PUBLIC

94-00-00-01 -9- Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

- COMS:19200baud - Tera Term VT

File Edit Setu p Contral Window Hel P
ri

Ualid commands <€(case sensitivel:
Dizplay Uersion: UER

Device to Process: DEU —t#
specifies target device
for t Ctyped,. # can be:
H: foxr MOR Flash
S: for SPI Flash
R: for SRAM

Image to Process: IMG —nit
specifies image for next command series
for —n <number?>. H# is:
image number: B._.3

Erase Image: ERS
eraszes image

Program Image: PGM —f#
writes to—be—uploaded image
—f {formatd>. # can be:
H: for Intel Hex records
5: for Motorola 5179 records

Compare Image: CHF —f1
compares image to a to—he—uploaded image
for —f <format?>, # can bhe:
H: for Intel Hex records
§: for Motorola 519 records

CRC—Stamp Image: CHRC —cHiililt
embeds CRC into image for verification
for —c <CRGC>, #ift# MUST be:
four—digit hexadecimal number. all CAPS
<A

2C4, for example?

Uerify Image: UFY
use embedded CRC to wverify image

Image Ouerride: OURD —nit
specifies the override image number
for —n <numbewx>, H is:
override image: 8. _3
clear owverride: —1
if no argument, current override is displaved

Force Load Image: FLD
forces loading of image =specfifed in *IMG' command

HOR Flash Test: NFT —nit —ait
conducts MOR Flash reads oy writes
for —n <numbewx>,. H is:
image number: B..3
for —a Caction?>. # can be:
W: for write — DESTRUCTIUE
H: for read

Sector Addr Test: EAT
conducts MOR Flash sector address test — DESTRUCTIVE

SPI HURAM Test: SNT —aitiiiiiiil
conducts SPI NURAM reads- writes — DESTRUCTIUE
for —a <address),. HHHH#EH# MUST he:
five—digit hexadecimal number. all CAPS
CAYFEA,. for examplel?

Jump to SRAM Image: JMP
Jumps to image loaded into SRAM at 8x2808000000

Figure 6: NOR Flash Commands
PUBLIC

http://www.cobham.com/HiRel

COBHAM

Code 8 shows snippets of parsing the commands and calling the particular function. For the full
source code to the example application, refer to
https://ams.aeroflex.com/pagesproduct/software/access/default.cfm

uint8_t ProcessCommandLine (uint8_t ConsoleCommand) {
switch (ConsoleCommand)
{
case CCMD_DISPLAY_VERSION:
ConsoleDisplayVersioninfo ();

break;

case CCMD_INIT_NFC:
Ex_NFC_Init ();
break;

case CCMD_ERASE_IMAGE:
Ex_NFC_Eraselmage ();
break;

case CCMD_CHECK_FOR_ERASED_IMAGE:
Ex_NFC_CheckForErasedimage ();
break;

case CCMD_WRITE_WORD:
Ex_NFC_WriteWord ();
break;

case CCMD_READ_WORD:
Ex_NFC_ReadWord ();
break;

case CCMD_READ_BLOCK:
Ex_NFC_ReadBlock ();
break;

case CCMD_WR_RD_VFY_BLOCK:
Ex_NFC_WriteReadVerify_Block ();
break;

default:
DisplayMenu ();

break;

}
if (! ConsoleQuietMode) sendstr ("\r\n:>“);

return (ConsoleCommand);

}
Code 8: Command Parsing
PUBLIC
94-00-00-01 -11 - Cobham Semiconductor Solutions

Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel
https://ams.aeroflex.com/pagesproduct/software/access/default.cfm

COBHAM

6.0 Summary and Conclusion

The NFC provides the data interface and control protocols to operate the NOR Flash via the Nor Flash

Memory 1/0.
For more information about our UT32MOR500 microcontroller and other products, please visit our

website: www.cobham.com/HiRel or email us at info-ams@cobham.com.

PUBLIC

94-00-00-01 -12 - Cobham Semiconductor Solutions
Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

REVISION HISTORY

Date Rev. # Author Change Description
12/06/18 1.0.0 JA Initial Release
PUBLIC
94-00-00-01 -13 - Cobham Semiconductor Solutions

Version 1.0.0 Cobham.com/HiRel

http://www.cobham.com/HiRel

COBHAM

Cobham Semiconductor Solutions

The following United States (U.S.) Department of Commerce statement shall be applicable if these
commodities, technology, or software are exported from the U.S.: These commaodities, technology, or
software were exported from the United States in accordance with the Export Administration
Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Semiconductor Solutions

4350 Centennial Blvd CDBHHm
Colorado Springs, CO 80907

E: info-ams@aeroflex.com
T: 800 645 8862

Aeroflex Colorado Springs Inc., DBA Cobham Semiconductor Solutions, reserves the right to make changes to any products and services
described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this
data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use
of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a

product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual
rights of Aeroflex or of third parties.

PUBLIC

94-00-00-01 -14 - Cobham Semiconductor Solutions
Version 1.0.0 www.cobham.com/HiRel

http://www.cobham.com/HiRel

	1.0 Overview
	2.0 Application Note Layout
	3.0 NFC Unit Hardware
	3.1 NFC Unit Control Register
	3.2 NFC Unit Status Register
	3.3 NFC Unit Sector Register
	3.3.1 NFC Peripheral ID Registers
	4.0 NFC Unit Initialization
	5.0 NFC Unit Programming
	5.1 NFC Write Word
	5.2 NFC Read Word
	5.3 NFC Write Read Verify
	5.4 NFC Read Block
	5.5 NFC Erase Image
	5.6 NFC Check Erase Image
	6.0 Summary and Conclusion
	REVISION HISTORY

